Exploration of Direct Preference Optimization
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Major Premise In this study, all machine learning processes are centered around a pre-trained large language
model (LLM).
Key words direct preference optimization, RL-free alternative to RLHF, implicit reward modeling, different

levels of feedback

1 Introduction

Explore an easy understanding of DPO through Q&A.

1.1 What is the task that DPO do?

Direct preference optimization (DPO) is a new method that helps large, unsupervised language
models better match human preferences. DPO fine-tunes language models directly using human
feedback with a simpler mechanism.
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Fig. 1. RHLF and DPO, what’s the difference?

1.2 Some Q&A about RHLF.

Previously, we adopted RHLF to address this task. The typical RLHF pipeline for LLMs generally
consists of three key phases: (1) supervised fine-tuning (SFT), (2) preference sampling and reward
model training, and (3)RL optimization.

1.2.1  How does RHLF align machine behavior with human preferences?

n}r%xExwz), y-mo(ylx) |79 (6 )| = BDL [7o(ylx) || mrer(ylx)] (1)

There are two hierarchical levels of alignment: (1) Inner level: A reward model is trained to
mimic human ratings-reward function rg. (2) Outer level: The Reward Function ry is used within
a second-level Objective Function. The model is encouraged to generate responses that maximize
r1, while being penalized if its policy deviates excessively from the reference policy.
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1.2.2 How to train a model for reward function?

D= {( (l)’y’(‘l)’y’(l))}i=1 @

Given y, the preferred response, and y; the less preferred response, trainable reward model r4 (y, x)
is optimized via:

Lr(rg, D) =~y y-n [l0g o (rs (. yu) = r9(x.0) | 3)

where o is the sigmoid function, which maps the reward difference to a probability in the
range [0, 1]. Minimizing Lz maximizes the likelihood of correctly ranking responses per human
preference.

1.2.3  What is the origin and technical meaning of the reference strategy (mef(y | x))? The reference
policy, 7ef, denotes the output probability distribution generated by a pre-trained or supervised
fine-tuned model, and serves as a behavioral baseline during Reinforcement Learning from Human
Feedback (RLHF).

1.2.4  Why use KL divergence? (1) the output is a probability distribution. (2) the KL divergence term
penalizes excessive deviations from this baseline. The model improves its reward while maintaining
safe and stable outputs.

Prompts Dataset
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Fig. 2. Step3: Reinforcement Learning reward model using the PPO reinforcement learning algorithm.

1.2.5  Why is the RLHF process classified as Reinforcement Learning? In the workflow shown in
Fig. 2, Reinforcement Learning from Human Feedback (RLHF) consists of key steps that closely
align with the canonical reinforcement learning (RL) paradigm:

(1) Policy: The “Tuned Language Model (RL Policy)” acts as the policy 7y, which determines
how to generate output y given an input x.

(2) Reward: The “Reward Model” functions as the environment’s feedback mechanism, assigning
a scalar reward r(y | x) to each model output.

(3) Policy Update: Algorithms such as Proximal Policy Optimization (PPO) are used to adjust
and optimize the policy based on the received rewards, enabling the model to generate
outputs that obtain higher rewards. The parameter update rule 8 « 6 + Vo J(0) is a standard
policy gradient step in RL.
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(4) Environment: The environment in this context consists of the prompt combined with the
reward model. After each model output, the reward model provides a score, serving as the
environment’s feedback.

1.2.6  What is reward hacking? Where is reward hacking used in RLHF? Why is reward hacking
problematic? (1) Reward hacking is a long-standing problem in RL where the policy achieves a
high reward but fails to meet the actual objective (e.g. exploiting potential shortcuts like response
length and style to develop specific response patterns to hack the reward model). (2) In RLHF, it
requires maintaining a reward model that mimics human judgment—a process prone to errors
like reward hacking (3) Not only does it not fully satisfy human needs, it also increases arithmetic
requirements.

1.3 Direct Preference Optimization (DPO) Loss Function:

Let x be the input, y, the preferred response, and y; the less preferred response.

1. mp(yy | x), mo(y; | x) : Probabilities assigned by the model with parameters 6.
2. Tref (Yy | %), 7ef(ys | x) : Probabilities from the reference (baseline) policy.

3. flog ToWu | %) _ 5y ol %)
Tref (Yu | x) ”ref(yl | x)
Optimizes the model to prefer y, over y; compared to the baseline; f controls baseline adherence.

Mo gy o0 |
Tref (Yu | X) Tret (Y1 | X)
Expected value across all input and response pairs for overall optimization.

4. Lppo(7g; Mref) = Ex y,.y | Plog

1.4 Can DPO scale to a real preference dataset?

1.4.1 What is the ’real preference dataset’? A real preference dataset refers to data collected
from genuine human judgments or choices, as opposed to synthetic or automatically generated
preferences. Automatic metrics like ROUGE often misalign with human judgments in summarization.
Models fine-tuned via human preferences (e.g., PPO) yield more relevant summaries[14]. To compare,
DPO was evaluated with PPO and Preferred-FT[16] on the TL;DR dataset.

1.4.2  How is temperature generally implemented efficiently in large language models (LLMs)? The
temperature parameter is not predetermined. During inference, the model outputs a logits vector;
temperature is applied by dividing each logit by the temperature value before softmax normalization,
thereby modifying the resulting probability distribution.

1.4.3  How does it perform? DPO achieved a 61% win rate at temperature 0.0, slightly outperforming
PPO’s 57% at its best setting. DPO also showed more stable performance across temperatures, unlike
PPO’s variability.

1.5 Other about DPO itself

1.5.1  What is Single-turn dialogue? A single turn refers to one exchange between a user and a

model, typically consisting of one prompt and one response, without ongoing conversation history.

1.5.2  Single-turn dialogue performance. DPO outperforms or matches other methods in single-
turn dialogue tasks from the Anthropic HH dataset, including strong baselines like Preferred-FT
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and Best-of-128. It uniquely enhances preferred responses and converges rapidly, highlighting its
efficiency.

2 Mathematical Understanding of DPO-Driven Advantages
2.1 What is human’s preference?
The BT formula proposes that the human preference distribution p* for a given response pair can
be expressed as the following formula:

exp (r* (x, y1))
exp (r*(x,y1)) + exp (r*(x, y2))

Py -y lx) = 4

2.2 Difference in Reward Function

In RHLF, the reward function is trained separately via loss function (2). In contrast, DPO simplifies
the process as follows:

1
p

The partition function Z(x) normalizes the policy distribution 7, (y | x):

Z(x) = ) Tty | %) exp( r(x, y)) 5)
y

1

1
7 (y | x) = %”ref(y | x) exp (ﬁr(x, y))

Applying identity transformation and substituting r into the original reward function r*:

7 (y | x)
r*(x,y) = flog —/—% + Blog Z(x
(xy) = p 8y 1) flog Z(x)
Substituting into Eq.4:

1

Py =Yz | x) =

1+exp (ﬁ log ;:f((zﬁzlr;)) ~ Plog ;Zf((yyllll?))

Approximated by:
Py -y | x) =0 (r(xy) —r (x.12)) (6)

Yielding the loss function:

79 (Yu | x) ~ flo 7o (y1 | x) )] ™

Loro (703 ref) = —E(x, )~ [IO G( lo
PO (7705 Tref) (rywy)~D |logo| flog Tref(Yy | X) Tref (Y1 | X)

3 Overview of Research Trends

Broadly speaking, there is a central goal shared by the community: to help large, unsupervised
language models better align with human preferences. A variety of research themes have emerged
around this objective, including Reward Models (explicit/implicit, pointwise/preference, response-
level/token-level, negative/positive), Feedback Mechanisms (binary/preference, human/AlI, pair-
wise/listwise), and Reinforcement Learning approaches (reference-free/reverse, length control/reverse,
different divergences, on-policy/off-policy). These themes have given rise to a range of methodolo-
gies. Recently, one approach has stood out as particularly promising—Direct Preference Optimiza-
tion (DPO). Many variants and related explorations have emerged from DPO itself.

The survey [19] provides a well-designed overall perspective on DPO. I extract its key research
perspectives and discuss specific studies in a reduced form.
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4 Research Questions and Variants
4.1 Effect of Implicit Reward Modeling

Examining the generalization capabilities of the implicit reward modeling employed in DPO.

4.1.1 A General Theoretical Paradigm to Understand Learning from Human Preferences[6].

e Problem: DPO tends to overfit the reward model.
e Method: Introduced a novel loss function to mitigate reward overfitting.
e Limitation: Focused on overfitting, not generalization under distribution shifts.

4.1.2  On the limited generalization capability of the implicit reward model induced by direct prefer-
ence optimization[9].

e Problem: Implicit reward modeling in DPO (DPORM) underperforms in generalization com-
pared to explicit reward modeling (EXRM), especially under distribution shifts.

e Method: Empirical evaluation across five out-of-distribution (OOD) settings comparing
DPORM and EXRM.

e Discovery: DPORM suffers a 3% average and up to 7% accuracy drop under OOD conditions.

4.1.3  Policy optimization in rlhf: The impact of out-of-preference data[8].

e Problem: Policy optimization methods (PPO, DPO, IPO) incur errors when aligning with user
preferences from limited distributions.

o Contribution: Theoretical and empirical analysis emphasizing the importance of OOD prefer-
ence data; showed that EXRM improves policy performance.

e Limitation: Did not address how to enhance DPORM’s generalization.

4.1.4  Generalizing reward modeling for out-of-distribution preference learning[7].

e Problem: Reward models often fail to generalize across distributions.

e Contribution: Meta-learned a general reward model via bilevel optimization to guide policy
learning under varying distributions.

e Limitation: Focused on EXRM; DPO generalization remains unaddressed.

4.1.5 Regularizing hidden states enables learning generalizable reward model for llms[20].

o Problem: Reward models lack robustness to distribution shifts.

o Method: Regularized hidden states by preserving language model capabilities with auxiliary
text-generation losses, while learning a reward.

e Limitation: Focused on EXRM; DPO generalization remains unaddressed.

4.2 Effect of Different Feedback

Obtaining high-quality pair-wise preference data is both costly and time-consuming, posing chal-
lenges for scalability. Additionally, instance-level optimization may not fully leverage the potential
of preference data. It should be emphasized that while reward is a critical component of feedback,
DPO implicitly models reward. Consequently, feedback is more directly derived from (or understood
through) the final objective function.

4.2.1  What are point-wise,pair-wise and other rewards? As shown in Tab.1, Point-wise rewards
assign a numerical score to each model output individually. Pair-wise preference data indicate
which response is preferred from a pair of model-generated outputs for the same input, capturing
relative preference rather than absolute scores.
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Table 1. Comparison of Different Feedback Granularities for Model Optimization

Feedback Type

Evaluation Target

Feedback Format

Point-wise

Pair-wise

List-wise

Binary

Step-wise

Token-wise

Single, complete model output (e.g., a
full response)

Two distinct model outputs (for the
same input prompt)

A set or list of multiple model outputs
(for the same input)

Single, complete model output

Intermediate steps or states within a
sequential generation process

Specific tokens or spans of text within
a model output

Absolute scalar score or categorical rat-

ing (e.g., 1-5 scale, "good"/"bad")

Relative preference between the pair
(e.g., Output A is better than Output
B)

Ordinal ranking or partial ordering of

the outputs in the list

Dichotomous judgment (e.g., accept-
able/unacceptable, correct/incorrect)

Evaluation of individual steps or deci-
sion points (e.g., correctness of a rea-
soning step)

Annotation or fine-grained evaluation
at the token/span level (e.g., identifying

erroneous tokens)

4.2.2

4.2.3

4.24

4.2.5

Raft: Reward ranked finetuning for generative foundation model alignment[4].

Feedback: A reward ranked fine-tuning method to explore the list-wise feedback.

Core idea: The model iteratively learns from the induced best-of-K policy [3, 11], which
samples K responses and selects the one with the highest reward as the final output. Then
the model is fine-tuned on the optimal responses.

Rrhf: Rank responses to align language models with human feedback[21].

Feedback: Exploiting rank from human annotators or reward models by combining a modified
rank loss with SFT loss.

Trick: To avoid explicit reward model, they take length-normalized conditional log probability
of responses under policy model 7y as reward score.

Core idea: Letting the policy model ry give larger probabilities for better responses and give
smaller probabilities for worse responses

Advancing llm reasoning generalists with preference trees[22].

Feedback: A data collection method named ULTRAINTERACT for tree-structured preference
data, especially in the reasoning domain.

Contribution: (1) Decomposing complex tasks into multiple steps to obtain multi-turn model
actions. (2) Modeling correct and incorrect actions organized in binary tree structures. (3) A
critique model to refine the solution while the actor interact with the Python environment.
(4) By training an explicit reward model, they enhanced the Bradley-Terry objective (Eq.4)
with a term to directly boost the rewards of chosen actions while decreasing the rewards of
rejected ones.

Model alignment as prospect theoretic optimization[5].
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4.2.6

4.2.7

4.2.8

(1)

(2)

Feedback: Maximizing the utility(usability or satisfaction) of LLM generations directly rather
than maximizing the log-likelihood of preferences inspired from prospect theory[17].

Core idea: It focuses on discerning whether a preference is desirable or undesirable which
eliminates the need for two preferences for the same input.

Fromr to q*: Your language model is secretly a q-function[13].
RLHF (PPO stage): Frames text generation as a token-level MDP, a multi-step sequential
decision process where tokens are selected at each step, and reward is based on the entire
sequence’s quality.
DPO (original perspective): Frames text generation as a bandit problem, a single-step decision
where an entire response constitutes a single action, and preference is derived from comparing
complete outputs, disregarding token-level choices.
Contribution: Despite its initial conceptualization as a simple bandit problem, DPO can be re-
derived as a specific token-level MDP reinforcement learning algorithm (inverse Q-learning).
This implies DPO satisfies the Bellman equation, theoretically linking it to more complex,
sequential RLHF methods.

Token-level direct preference optimization[24].

Feedback: Token-level Direct Preference Optimization (TDPO), an approach to align LLMs
with human preferences by optimizing policy at the token level.

Method: (1) Incorporating forward KL divergence constraints for each token. (2) Utilizing the
Bradley-Terry model 4 for a token-based reward system.

Contribution: Method(1) improving alignment and diversity. Method(2) enhancing the reg-
ulation of KL divergence, while preserving simplicity without the need for explicit reward
modeling.

A complex relation: Nash-Learning& Point-wise&pair-wise&DPO.

Two Main Deficiencies of Deriving Pairwise Preferences from Pointwise Rewards
via the BT Model:
e Suboptimal Performance Compared to Direct Methods:

— Deficiency: The approach of first assigning pointwise rewards to individual responses
and then using the Bradley-Terry (BT) model to infer pairwise preferences (e.g., response
A is preferred over B) was found to be less effective or “not comparable” to methods that
directly model preferences from explicit pairwise comparisons.

— Intuitive Understanding: This indirect inference step can lead to a loss of information or a
less accurate representation of true preferences compared to directly learning from data
explicitly stating “A is better than B”. It’s an approximation that might not capture the
nuances of direct human comparative judgment.

o Failure to Address Inconsistencies within Pairwise Preferences:

— Deficiency: This method inherently struggles with, or rather masks, inconsistencies often
present in human preference data, such as cyclical preferences (e.g., A > B, B > C, but
C > A).

— Intuitive Understanding: Pointwise rewards typically impose a transitive, linear ordering
(if score(A) > score(B) and score(B) > score(C), then score(A) > score(C)). When the BT
model derives preferences from these scores, it inherits this enforced consistency. Conse-
quently, the model doesn’t learn to handle or represent the underlying non-transitive
nature or other inconsistencies that might exist in the raw preference judgments, as
these are effectively "ironed out” by the initial pointwise scoring.

How Nash Learning Methodologies Overcome These Limitations:
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o Addressing Comparability: Nash learning frameworks inherently operate on direct pairwise
comparisons. Each LLM (player) aims to maximize its probability of being preferred over
its opponent. This directly optimizes for relative superiority in a pairwise context, aligning
with the strengths of direct pairwise preference modeling.

o Addressing Inconsistencies: In a game-theoretic setting, players (LLMs) learn equilibrium
strategies. If the underlying preference landscape is inconsistent (e.g., non-transitive), the
system doesn’t force a single, globally consistent ranking. Instead, models learn to navigate
this complex space, potentially leading to mixed strategies or cyclical dynamics that reflect
the inconsistencies rather than ignoring them. The goal shifts from finding a universally
"best" response to finding a strategy that performs optimally given the opponent’s strategy
and the potentially inconsistent preference structure.

(3) How DPO Overcomes These Limitations and Its Distinction from Nash Learning:

e How DPO Overcomes Limitations:

— Addressing Comparability: DPO directly optimizes a policy using (chosen, rejected) pref-
erence pairs, bypassing the need for an explicit pointwise reward model. Its objective
function is formulated to directly increase the likelihood of preferred responses and
decrease the likelihood of dispreferred ones relative to each other.

— Addressing Inconsistencies: DPO learns from the provided dataset of preference pairs. If
this dataset contains inconsistencies (e.g., the same input yields A > B sometimes and
B > A other times, or implies A > B,B > C,C > A across different examples), DPO’s
optimization process attempts to find a policy that best fits this (potentially noisy or
inconsistent) data distribution. It doesn’t explicitly model the inconsistency but learns
a policy robust to it or one that reflects the aggregate signal from the data. It does not
enforce transitivity a priori like the pointwise reward approach.

e Distinction from Nash Learning:

— Learning Paradigm: DPO is typically a single-agent optimization problem where a policy
is trained against a static dataset of preferences. Nash learning involves multiple (at least
two) agents learning dynamically and competitively, where each agent’s optimal strategy
depends on the strategies of other agents.

— Objective: DPO aims to maximize the log-likelihood of the observed human preferences
in the dataset. Nash learning aims to find a Nash equilibrium, where no player can
unilaterally improve its outcome (probability of being preferred over its opponent) by
changing its strategy.

— Reward Signal Dynamism: In DPO, the "reward" is implicitly defined by the fixed prefer-
ence pairs. In Nash learning, the "reward" (being preferred) is dynamic and depends on
the opponent’s current response and the preference evaluator (which could be a reward
model or human feedback within the competitive loop).

— Modeling of Inconsistencies: While DPO learns a policy that is implicitly robust to incon-
sistencies in the data, Nash learning can, in principle, model and even exhibit behaviors
(like cyclical strategies) that explicitly reflect non-transitive preference structures if they
lead to an equilibrium.

— Relevant works: Nash learning from human feedback[10], Self-play preference optimiza-
tion for language model alignment[18], Direct nash optimization: Teaching language
models to self-improve with general preferences[15].

4.2.9 Self-Play flne-tuNing [2, 18].
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o Method: Self-Play fIne-tuNing (SPIN) considered a two-player game, where the main player
distinguishes the generated responses are from model or human, while the opponent player
generates responses indistinguishable from human.

e Contribution: Eliminating the need for a reward model and derived a objective in a similar
form to DPO.

4.2.10 Negative Log-likelihood.

e What is it? : A negative log-likelihood (NLL) loss [23] is similar to SFT (supervised fine-tuning)
to rank loss.

Loroatr, =Loro () yi's ci, yilx) + e L (e}’ y}'1x)
=-logo ﬁlogw _ ng
Mi(ef’ yi"li) M (cf yjlx:) ®)
log My (c}", y;"|x:)

Lppo+niL Total loss function, combining DPO and NLL losses.
Lppo Direct Preference Optimization (DPO) loss term.
L1 Negative Log-Likelihood (NLL) loss term.
c¢”,y}” Preferred Chain-of-Thought (CoT) reasoning ¢ and answer y for input x;.
cg, yf Dispreferred CoT reasoning c and answer y for input x;.
x; Input question.
Mp(-|x;) Probability of generating a sequence under the current model (with parameters ) given
input x;.
M; (+|x;) Probability of generating a sequence under the reference model (from iteration t) given
input x;.
o(-) Sigmoid function.
B Temperature hyperparameter for the DPO loss.
a Weighting hyperparameter for the NLL loss.
lc”| + |y”| Total length of the preferred CoT reasoning ¢}’ and answer y.".
e Problem: DPO is intuitively expected to increase chosen and decrease rejected response
likelihoods. However, this conflicts with the observed decrease in chosen response likelihood
over time [12, 13].
e Usage: Forcing the model to learn the response with the highest reward.
e Contribution: When training with DPO without negative log-likelihood (NLL) loss, the log
probabilities of chosen sequences barely increase over training; when training with DPO with
NLL loss normalized by the total response length, the log probabilities increase noticeably.
Thus, it believed that NLL enhances learning over the winning response from each pair.

4.3 Effect of KL Penalty Coefficient and Reference Model

Investigating the impact of the KL penalty coefficient, which constrains the policy model to remain
within a specified proximity to the reference model, and the choice of the reference model.

4.3.1  What is instance-level optimization? Instance-level optimization refers to updating model
parameters using feedback from individual training examples (e.g., a single response or a response
pair), rather than leveraging feedback aggregated over multiple samples or lists.
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4.4 Online DPO

Exploring iterative and online variants of DPO, as well as strategies for efficiently collecting new.
preference datasets

4.5 Reward Hacking

Overcoming the limitations caused by reward hacking arising from both explicit and implicit reward
models. Alignment Tax Investigating the alignment tax and proposed methods to reduce its effect.

4.5.1 What is alignment tax? A term describing the cost in performance, efficiency, or capability
incurred when training LLMs to align better with human preferences, such as sacrificing some
original abilities or performance.

5 Elements to be explored
5.1 Datasets
5.1.1 Human labeled .

5.1.2 Human labeled .

5.2 Applications
5.2.1 Application on Large Language Models.

5.2.2  Application on Multi-modal Understanding and Generation.

5.2.3 More Applications.

5.3 proximal policy optimization (PPO).

Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an
intelligent agent. Specifically, it is a policy gradient method, often used for deep RL when the policy
network is very large.

5.4 Research Themes

Reward Models (explicit/implicit, pointwise/preference, response-level/token-level, negative/positive),
Feedback Mechanisms (binary/preference, human/Al, pairwise/listwise), and Reinforcement Learn-
ing approaches (reference-free/reverse, length control/reverse, different divergences, on-policy/off-

policy).

5.5 Implicit Reward Function

Implicit reward function that is parameterized by the policy model itself.[1]
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